LogoLogo
LogoLogo
  • Intro
    • Welcome
    • The Benefits of BSV Blockchain
    • What Can I Do?
    • Overview of GitHub repositories
    • Quick Start
  • Protocol
    • Introduction
    • BSV Blockchain
      • Blocks
      • Transactions
      • Proof of Work
      • Capabilities
      • Economic Model of Governance
      • Digital Asset Recovery
    • Network Policies
      • High-Level Architecture
      • Mining
      • Standard and Local Policies
      • Consensus Rules
      • Local Policies
    • Node Operations
      • Node Software
      • Bitcoin Server Network (BSN)
      • ChainTracker
      • Transaction Validation
      • UTXO Storage
      • Mempool
      • Block Assembler
      • Block Validation
      • Mining Software
      • Pruning transactions
      • Responsibilities of a Node
    • SPV Wallets, Overlays and SPV Processes
      • Simplified Payment Verification (SPV)
      • Instant Payments
      • Integrity Checks
      • SPV Wallets & Overlays
    • Transaction Lifecycle
      • Transaction Inputs and Outputs
      • Script
      • Transaction Flow
      • Constructing a transaction
      • Sequence Number and Time Locking
      • Transaction Templates
      • Transaction Processing
      • Opcodes used in Script
    • Privacy
      • Keys and Identity
      • Private vs Anonymous
      • Digital Signatures
      • Privacy on the Public Blockchain
  • Network Access Rules
    • Rules
      • Table of Contents
      • Background to the Rules
      • PART I - MASTER RULES
      • PART II - GENERAL RULES
      • PART III - ENFORCEMENT RULES
      • PART IV - DISPUTE RESOLUTION RULES
      • PART V - INTERPRETIVE RULES
    • FAQs
      • Miners
      • Professionals
      • Users
  • Important Concepts
    • High Level
      • Web3
      • Timestamping
      • SPV
      • UTXO vs Account Based
      • Linked Keys
      • Smart Contracts
    • Details
      • Hash Functions
      • Merkle Trees
      • Sighash Flags
      • Script
      • SPV
        • Deep Dive
        • Payments Flow
        • Data Models
        • Broadcasting
  • Network Topology
    • Mandala Upgrade
    • Nodes
      • SV Node
        • Architecture
        • System Requirements
        • Installation
          • SV Node
            • Configuration
            • AWS Volumes Setup
            • DDOS Mitigation
            • Docker
            • Genesis Settings
            • GetMiningCandidate
            • GKE
            • Network Environments
              • Regtest
              • STN
              • Testnet
        • Alert System
          • Alert Messages
          • Running the Alert System
            • Startup Script
          • Webhooks
        • RPC Interface
          • RPC Methods
        • Frequently Asked Questions
          • Blocks
          • Initial Block Download
          • Transactions
          • Log File Warnings
          • Safe Mode
          • Bug Bounty
        • Chronicle Release
      • Teranode
    • Overlay Services
      • Overlay Example
    • SPV Wallet
      • Quickstart
      • Key Concepts
      • AWS Deployment
        • Installation
        • Manage & Maintain
        • Update
        • Delete
      • Components
        • SPV Wallet Server
        • Storage
        • Web Admin
        • Block Headers Service
        • Web App & API
      • Who is it for?
      • Functionality & Roadmap
      • Contribute
      • Developers Guide
        • SPV Wallet
          • Authentication
          • Configuration
          • Notification
        • Go Client
          • Authentication
        • JS Client
          • Authentication
        • Admin
        • Keygen
        • Block Headers Service
          • Authentication
          • Configuration
      • Additional Components
  • paymail
    • Overview
    • BRFC Specifications
      • Specification Documents
      • BRFC ID Assignment
    • Service Discovery
      • Host Discovery
      • Capability Discovery
    • Public Key Infrastructure
    • Payment Addressing
      • Basic Address Resolution
      • Sender Validation
      • Receiver Approvals
      • PayTo Protocol Prefix
    • Verify Public Key Owner
    • Recommendations
  • Guides
    • Local Blockchain Stack
      • Mockchain Stack
    • Business Use Cases
      • Creating a Tranche of Event Tickets
    • SDKs
      • Concepts
        • BEEF
        • Fees
        • SPV
        • Transactions
        • Op Codes
        • Script Templates
        • Signatures
        • Verification
      • TypeScript
        • Node, CommonJS
        • React
        • Low Level
          • Verification
          • ECDH
          • Numbers & Points
          • Signatures
          • 42
          • ECDSA
          • Hmacs
          • Keys
          • Scripts
        • Examples
          • Creating a Simple Transaction
          • Verifying a BEEF Structure
          • Creating Transactions with Inputs, Outputs and Templates
          • Creating the R-puzzle Script Template
          • Message Encryption and Decryption
          • Message Signing
          • Building a Custom Transaction Broadcast Client
          • Verifying Spends with Script Intrepreter
          • BIP32 Key Derivation with HD Wallets
          • Using Type 42 Key Derivation for Bitcoin Wallet Management
          • Creating a Custom Transaction Fee Model
          • Building a Pulse Block Headers Client
          • Using ECIES Encryption
      • Go
        • Examples
          • Simple Tx
          • Keys
          • Encryption
          • Broadcasting
          • Inscribing
          • Data Markers
          • Linked Keys
          • ECIES
          • Fees
          • HD Keys
          • Headers
          • Secure Messages
          • Merkle Path Verification
      • Python
        • Examples
          • Simple Tx
          • Verifying BEEF
          • Complex Tx
          • Script Templates
          • Encryption
          • Message Signing
          • Building A Custom Broadcaster
          • HD Wallets
          • Linked Keys
          • Fees
          • Merkle Path Verification
          • ECIES
  • BSV Academy
    • Getting Started
    • BSV Basics: Protocol and Design
      • Introduction
        • Bit-Coin
      • The BSV Ledger
        • The Ledger
        • Triple Entry Accounting
        • Example
      • Coins and Transactions
        • Coins
        • Transactions
        • Transaction Fees
      • Theory
      • Conclusion
    • BSV Enterprise
      • Introduction
      • About BSV Blockchain
        • Introduction
        • Safe, Instant Transactions at a Predictably Low Cost
          • Reliably Low Fees
          • Comparison to Legacy Transaction Systems
          • Payment Channels
        • Scalability to Accommodate Global Demand
          • Big Blocks Show Big Potential
        • A Plan for Regulatory Acceptance
          • Ready-made Compliance
          • The Open BSV License
        • Protocol Stability
          • Building Foundations on a Bedrock of Stone
      • Technical Details
        • The Network
          • The Small World Network
          • Robust In Its Unstructured Simplicity
        • The Bitcoin SV Node Client
          • Teranode - The Future of BSV
        • The Protocol - Simple, Robust and Unbounded
          • What is the BSV Protocol?
        • Proof of Work
          • The Algorithm
          • Efficiency of Proof of Work
        • Privacy and Identity
        • Permissions and Privacy
      • Resources and Tools
        • The Technical Standards Comittee
          • TSC Principles
          • Standard Development Process
          • Status of Current and In-progress Standards
        • The Working Blockchain
          • Pruning to Create a Working Blockchain
          • Building a Working Blockchain from a List of Block Headers
          • A World View Backed by Proof of Work
    • Hash Functions
      • What are Hash Functions?
        • The Differences Between Hashing and Encryption
        • The Three Important Properties of Hash Functions
        • The Hash Functions Found in BSV
      • Base58 and Base58Check
        • What is Base58 and Why Does Bitcoin use it?
        • What is Base58 and How Does BSV use it?
      • SHA256
        • BSV Transactions and SHA-256
        • BSV Blocks and SHA-256
        • Proof-of-Work and HASH-256
      • Walkthrough Implementation of SHA-256 in Golang
        • Overview of SHA-256
        • SHA-256 Input and Processing
        • SHA-256 Compression
        • SHA-256 Final Value Construction and Output
      • RIPEMD-160
        • BSV Addresses & WIFs
      • Walkthrough Implementation of RIPEMD-160 in Golang
        • Overview of RIPEMD-160
        • RIPEMD-160 Input and Processing
        • RIPEMD-160 Compression
        • RIPEMD-160 Final Value Construction and Output
      • Doubla Hashing and BSV's Security
        • Why is Double Hashing Used in BSV
        • Hash Functions and BSV's Security Model
    • Merkle Trees
      • The Merkle Tree
        • What is a Merkle Tree?
        • Why use a Merkle Tree?
        • Merkle Trees in Action
      • Merkles Trees in BSV
        • The Data Elements
        • Transaction Merkle Trees
        • Transaction Merkle Trees in Action
      • Merkle Trees and the Block Header
        • What is the Block Header
        • The Hash Puzzle
        • Proof-of-Work in Action
      • Merkle trees and Verifying Proof of Work
        • Broadcasting the Block
        • The Coinbase Transaction
        • Data Integrity of the Block
        • Saving Disk Space
      • Standarised Merkle Proof
        • What is a Merkle Proof?
        • The BSV Unified Merkle Path (BUMP) Standard
        • Simple and Composite Proofs
      • Merkle Trees and Simplified Payment Verification
        • SPV
        • Offline Payments
    • Digital Signatures
      • What are Digital Signatures
        • Background
        • Introduction
        • Digital Signatures Protocol
        • Properties of Digital Signatures
      • ECDSA Prerequisites
        • Disclaimer
        • Modular Arithmetic
        • Groups, Rings and Finite Fields
        • Discrete Logarithm Problem
        • Elliptic Curve Cryptography (ECC)
        • Discrete Logarithm Problem with Elliptic Curves
      • ECDSA
        • Introduction
        • ECDSA
        • Further Discussion
      • BSV and Digital Signatures
        • Introduction
        • BSV Transaction
        • ECDSA (secp256k1) for BSV Transaction
        • Summary
        • Signed Messages
        • Miner Identification and Digital Signatures
    • BSV Theory
      • Abstract
        • Peer-to-Peer Cash
        • Digital Signatures and Trusted Third Parties
        • Peer-to-Peer Network
        • Timechain and Proof-of-Work
        • CPU Power
        • Cooperation in the Network
        • Network Structure
        • Messaging Between Nodes
      • Introduction
        • Commerce on the Internet
        • Non Reversible Transactions
        • Privacy in Commerce
        • The Paradigm of Fraud Acceptance
        • What is Needed...
        • Protecting Sellers From Fraud
        • Proposed Solution
        • Security and Honesty
      • Transactions
        • Electronic Coins
        • Spending a Coin
        • Payee Verification
        • Existing Solutions
        • First Seen Rule
        • Broadcasting Transactions
        • Achieving Consensus
        • Proof of Acceptance
      • Timestamp Server
        • Timestamped Hashes
        • A Chain of Timestamped Hashes
      • Proof of Work
        • Hashcash
        • Scanning Random Space
        • Nonce
        • Immutable Work
        • Chain Effort
        • One CPU, One Vote
        • The Majority Decision
        • The Honest Chain
        • Attacking the Longest Chain
        • Controlling the Block Discovery Rate
      • Network
        • Running the Network
        • The Longest Chain
        • Simultaneous Blocks
        • Breaking the Tie
        • Missed Messages
      • Incentive
        • The Coinbase Transaction
        • Coin Distribution
        • Mining Analogy
        • Transaction Fees
        • The End of Inflation
        • Encouraging Honesty
        • The Attacker's Dilemma
      • Reclaiming Disk Space
        • Spent Transactions
        • The Merkle Tree
        • Compacting Blocks
        • Block Headers
      • Simplified Payment Verification
        • Full Network Nodes
        • Merkle Branches
        • Transaction Acceptance
        • Verification During Attack Situations
        • Maintaining an Attack
        • Invalid Block Relay System
        • Businesses Running Nodes
      • Combining and Splitting Value
        • Dynamically Sized Coins
        • Inputs and Outputs
        • A Typical Example
        • Fan Out
      • Privacy
        • Traditional Models
        • Privacy in Bitcoin
        • Public Records
        • Stock Exchange Comparison
        • Key Re-Use
        • Privacy - Assessment 2
        • Linking Inputs
        • Linking the Owner
      • Calculations
        • Attacking the Chain
        • Things the Attacker Cannot Achieve
        • The Only Thing an Attacker Can Achieve
        • The Binomial Random Walk
        • The Gambler's Ruin
        • Exponential Odds
        • Waiting For Confirmation
        • Attack Via Proof of Work
        • Vanishing Probabilities
      • Conclusion
        • Conclusion Explained
    • Introduction to Bitcoin Script
      • Chapter 1: About Bitcoin Script
        • 01 - Introduction
        • 02 - FORTH: A Precursor to Bitcoin Script
        • 03 - From FORTH to Bitcoin Script
        • 04 - Bitcoin's Transaction Protocol
        • 05 - Transaction Breakdown
        • 06 - nLockTime
        • 07 - The Script Evaluator
      • Chapter 2: Basic Script Syntax
        • 01 - Introduction
        • 02 - Rules Around Data and Scripting Grammar
        • 03 - The Stacks
      • Chapter 3: The Opcodes
        • 01 - Introduction
        • 02 - Constant Value and PUSHDATA Opcodes
        • 03 - IF Loops
        • 04 - OP_NOP, OP_VERIFY and its Derivatives
        • 05 - OP_RETURN
        • 06 - Stack Operations
        • 07 - Data transformation
        • 08 - Stack Data Queries
        • 09 - Bitwise transformations and Arithmetic
        • 10 - Cryptographic Functions
        • 11 - Disabled and Removed Opcodes
      • Chapter 4: Simple Scripts
        • 01 - Introduction
        • 01 - Pay to Public Key (P2PK)
        • 02 - Pay to Hash Puzzle
        • 03 - Pay to Public Key Hash (P2PKH)
        • 04 - Pay to MultiSig (P2MS)
        • 05 - Pay to MultiSignature Hash (P2MSH)
        • 06 - R-Puzzles
      • Chapter 5: OP_PUSH_TX
        • 01 - Turing Machines
        • 02 - Elliptic Curve Signatures in Bitcoin
        • 03 - OP_PUSH_TX
        • 04 - Signing and Checking the Pre-Image
        • 05 - nVersion
        • 06 - hashPrevouts
        • 07 - hashSequence
        • 08 - Outpoint
        • 09 - scriptLen and scriptPubKey
        • 10 - value
        • 11 - nSequence
        • 12 - hashOutputs
        • 13 - nLocktime
        • 14 - SIGHASH flags
      • Chapter 6: Conclusion
        • Conclusion
    • BSV Infrastructure
      • The Instructions
        • The Whitepaper
        • Steps to Run the Network
        • Step 1
        • Step 2
        • Step 3
        • Step 4
        • Step 5
        • Step 6
      • Rules and their Enforcement
        • Introduction
        • Consensus Rules
        • Block Consensus Rules
        • Transaction Consensus Rules
        • Script Language Rules
        • Standard Local Policies
      • Transactions, Payment Channels and Mempools
      • Block Assembly
      • The Small World Network
        • The Decentralisation of Power
        • Incentive Driven Behaviour
        • Lightspeed Propagation of Transactions
        • Ensuring Rapid Receipt and Propagation of New Blocks
        • Hardware Developments to Meet User Demand
        • Novel Service Delivery Methods
        • MinerID
      • Conclusion
  • Research and Development
    • BRCs
    • Technical Standards
  • Support & Contribution
    • Join Our Discord
    • GitHub
Powered by GitBook
On this page
  • Input
  • Message Block Creation
  • Message Schedule Creation

Was this helpful?

Edit on GitHub
Export as PDF
  1. BSV Academy
  2. Hash Functions
  3. Walkthrough Implementation of RIPEMD-160 in Golang

RIPEMD-160 Input and Processing

PreviousOverview of RIPEMD-160NextRIPEMD-160 Compression

Last updated 4 months ago

Was this helpful?

Input and processing can be split into 3 sub-sections: input, message block construction, and message schedule construction.

Input

Our RIPEMD-160 implementation wouldn't be very useful unless it's able to take an input value. GoLang makes this easy by allowing us to cast an input string as an array of bytes, i.e. an array of 8 bit units.

For example, if our input is the string "abc", our code looks like the following:

message := []byte("abc") 

fmt.Printf("Output: %b", message)
//Output: [1100001 110010 1100011

Message Block Creation

Once we have our input, the next step is to use it to create the necessary message block(s).

The message blocks found in RIPEMD-160 have the same bit length requirements as SHA-256 -- they must be padded to 448 congruent to 512 bits in length. In other words, we need to pad the bits from our input message with enough bits to get a length that's 64 bits short of a multiple of 512.

To do this, we first add a 1 bit to denote where the padding bits start within the message block, then we add zeros until we reach a bit length that's 64 bits shy of a multiple of 512 bits.

If our input message is longer than 448 bits, then we'll need to create a message block that's longer than 512 bits but that's still a multiple of 512 bits; e.g. 1024 bits.

The logic is as follows:

package preprocessing 
  
import "encoding/binary" 

func HowMuchPadding(message []byte) int {   

      messageLength := len(message)   

      result := 0   

      if messageLength%64 < 56 { 
            result = 56 - messageLength%64 
      } else { 
            result = 64 + 56 - messageLength%64 

      } 
  
      return result 
} 
  
func AddZeroPaddingBits(messageBlock []byte, message []byte) []byte { 
  
      zeros := make([]byte, HowMuchPadding(message)) 
  
      //add separator bit 
      zeros[0] += 0x80 
  
      return append(messageBlock, zeros...) 

}   

func AddMessageLength(messageBlock []byte, message []byte) []byte {
 

      messageLength := len(message) << 3

      messageLengthInBits := make([]byte, 8) 
      binary.LittleEndian.PutUint64(messageLengthInBits, uint64(messageLength)) 
  
      return append(messageBlock, messageLengthInBits...) 

} 

func BuildMessageBlocks(message []byte) []byte { 

      var messageBlock []byte 

      messageBlock = append(messageBlock, message...) 

      messageBlock = AddZeroPaddingBits(messageBlock, message) 

      messageBlock = AddMessageLength(messageBlock, message) 

      return messageBlock 

} 

First, we take our message bytes as input via the function BuildMessageBlocks.

We then create another byte array which we can build upon without altering the byte array that's holding our message so we can pass our message bytes as input to subsequent functions and append our message bytes as a copy to our working messageBlock.

var messageBlock []byte 
fmt.Printf("Output: %b\n", messageBlock) 
//Output: []
 
messageBlock = append(messageBlock, message...) 
fmt.Printf("Output: %b\n" messageBlock) 
//Output: [1100001 1100010 1100011] 

The next step adds the required padding to get our message block to 448 congruent to 512 bits.

Since there are 8 bits in a byte, it follows that there are 512 bits in 64 bytes. Therefore, if we take our message length modulous 64 (i.e. the remainder of our message length divided by 64), and the result is less than 56 (i.e. 448), it means our message length is short enough to fit within one 64-byte block.

Once we've determined the amount of padding that needs to be added, we add our separator bit using the hexadecimal representation of 128 so it's added to the front of the byte immediately following our message bits, and then we add our zero bits until we reach 56 bytes or 448 bits.

func HowMuchPadding(message []byte) int { 
 
      messageLength := len(message) 
  
      result := 0 
  
      if messageLength%64 < 56 { 
            result = 56 - messageLength%64 
      } else { 
            result = 64 + 56 - messageLength%64
      } 

      return result 
} 

func AddZeroPaddingBits(messageBlock []byte, message []byte) []byte { 

      zeros := make([]byte, HowMuchPadding(message)) 

      //add separator bit 
      zeros[0] += 0x80 

      return append(messageBlock, zeros...) 
} 

Our messageBlock after these steps looks like this:

messageBlock = addZeroPaddingBits(messageBlock, message) 
fmt.Printf("Output: %b\n", messageBlock) 
//Output: [1100001 1100010 1100011 10000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The final step in our message block(s) construction is to add the length of our input message (which in our case using the input "abc" is 24, i.e., 3 bytes or 8x3 = 24).

If you already went through the SHA-256 implementation, you'll notice that these steps have been identical to this point; however, RIPEMD-160 follows a different convention with this step. The 8-byte value of our message length (which in our case is 3 bytes) has to be added to the end of our message block using the Little-Endian convention on a per byte basis.

What this means is instead of the most significant byte value, i.e., the biggest value, of our message length being on the left side of our 8-byte block -- e.g., 0 0 0 0 0 0 0 11000 -- it has to be on the right side -- e.g., 11000 0 0 0 0 0 0 0

To demonstrate, instead of our message block looking like it did in SHA-256:

messageBlock = addMessageLength(messageBlock, message) 
fmt.Printf("Output: %b\n", messageBlock) 
//Output: [1100001 1100010 1100011 10000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11000]

It will look like the following:

messageBlock = addZeroPaddingBits(messageBlock, message) 
fmt.Printf("Output: %b\n", messageBlock) 
Output: [1100001 1100010 1100011 10000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11000 0 0 0 0 0 0 0]

Message Schedule Creation

Now that we have our RIPEMD-160 message block(s), we can proceed to creating our message schedules.

Message schedules in the RIPEMD-160 hash function consist of 16 32-bit 'words' which can be represented as unsigned 32-bit integers.

Each 512-bit message block is used to create a 16-word message schedule -- 512/32 = 16.

Our BuildMessageSchedule function takes a single 512 messageBlock as input and uses it to build and return a 16-word message schedule:

package preprocessing 

import "encoding/binary" 

func BuildMessageSchedule(messageBlock []byte) [16]uint32 { 
  
      var schedule [16]uint32 
 
      i := 0 
      for j := 0; j < 16; j++ { 
  
            schedule[j] = binary.LittleEndian.Uint32(messageBlock[i:]) 
  
            i += 4 

      } 
  
      return schedule 
  
} 

Our message schedule using our same input of "abc" looks like this in hexadecimal:

fmt.Printf("Output: %x\n", schedule)
//Output: [80636261 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0]