LogoLogo
LogoLogo
  • Intro
    • Welcome
    • The Benefits of BSV Blockchain
    • What Can I Do?
    • Overview of GitHub repositories
    • Quick Start
  • Protocol
    • Introduction
    • BSV Blockchain
      • Blocks
      • Transactions
      • Proof of Work
      • Capabilities
      • Economic Model of Governance
      • Digital Asset Recovery
    • Network Policies
      • High-Level Architecture
      • Mining
      • Standard and Local Policies
      • Consensus Rules
      • Local Policies
    • Node Operations
      • Node Software
      • Bitcoin Server Network (BSN)
      • ChainTracker
      • Transaction Validation
      • UTXO Storage
      • Mempool
      • Block Assembler
      • Block Validation
      • Mining Software
      • Pruning transactions
      • Responsibilities of a Node
    • SPV Wallets, Overlays and SPV Processes
      • Simplified Payment Verification (SPV)
      • Instant Payments
      • Integrity Checks
      • SPV Wallets & Overlays
    • Transaction Lifecycle
      • Transaction Inputs and Outputs
      • Script
      • Transaction Flow
      • Constructing a transaction
      • Sequence Number and Time Locking
      • Transaction Templates
      • Transaction Processing
      • Opcodes used in Script
    • Privacy
      • Keys and Identity
      • Private vs Anonymous
      • Digital Signatures
      • Privacy on the Public Blockchain
  • Network Access Rules
    • Rules
      • Table of Contents
      • Background to the Rules
      • PART I - MASTER RULES
      • PART II - GENERAL RULES
      • PART III - ENFORCEMENT RULES
      • PART IV - DISPUTE RESOLUTION RULES
      • PART V - INTERPRETIVE RULES
    • FAQs
      • Miners
      • Professionals
      • Users
  • Important Concepts
    • High Level
      • Web3
      • Timestamping
      • SPV
      • UTXO vs Account Based
      • Linked Keys
      • Smart Contracts
    • Details
      • Hash Functions
      • Merkle Trees
      • Sighash Flags
      • Script
      • SPV
        • Deep Dive
        • Payments Flow
        • Data Models
        • Broadcasting
  • Network Topology
    • Mandala Upgrade
    • Nodes
      • SV Node
        • Architecture
        • System Requirements
        • Installation
          • SV Node
            • Configuration
            • AWS Volumes Setup
            • DDOS Mitigation
            • Docker
            • Genesis Settings
            • GetMiningCandidate
            • GKE
            • Network Environments
              • Regtest
              • STN
              • Testnet
        • Alert System
          • Alert Messages
          • Running the Alert System
            • Startup Script
          • Webhooks
        • RPC Interface
          • RPC Methods
        • Frequently Asked Questions
          • Blocks
          • Initial Block Download
          • Transactions
          • Log File Warnings
          • Safe Mode
          • Bug Bounty
        • Chronicle Release
      • Teranode
    • Overlay Services
      • Overlay Example
    • SPV Wallet
      • Quickstart
      • Key Concepts
      • AWS Deployment
        • Installation
        • Manage & Maintain
        • Update
        • Delete
      • Components
        • SPV Wallet Server
        • Storage
        • Web Admin
        • Block Headers Service
        • Web App & API
      • Who is it for?
      • Functionality & Roadmap
      • Contribute
      • Developers Guide
        • SPV Wallet
          • Authentication
          • Configuration
          • Notification
        • Go Client
          • Authentication
        • JS Client
          • Authentication
        • Admin
        • Keygen
        • Block Headers Service
          • Authentication
          • Configuration
      • Additional Components
  • paymail
    • Overview
    • BRFC Specifications
      • Specification Documents
      • BRFC ID Assignment
    • Service Discovery
      • Host Discovery
      • Capability Discovery
    • Public Key Infrastructure
    • Payment Addressing
      • Basic Address Resolution
      • Sender Validation
      • Receiver Approvals
      • PayTo Protocol Prefix
    • Verify Public Key Owner
    • Recommendations
  • Guides
    • Local Blockchain Stack
      • Mockchain Stack
    • Business Use Cases
      • Creating a Tranche of Event Tickets
    • SDKs
      • Concepts
        • BEEF
        • Fees
        • SPV
        • Transactions
        • Op Codes
        • Script Templates
        • Signatures
        • Verification
      • TypeScript
        • Node, CommonJS
        • React
        • Low Level
          • Verification
          • ECDH
          • Numbers & Points
          • Signatures
          • 42
          • ECDSA
          • Hmacs
          • Keys
          • Scripts
        • Examples
          • Creating a Simple Transaction
          • Verifying a BEEF Structure
          • Creating Transactions with Inputs, Outputs and Templates
          • Creating the R-puzzle Script Template
          • Message Encryption and Decryption
          • Message Signing
          • Building a Custom Transaction Broadcast Client
          • Verifying Spends with Script Intrepreter
          • BIP32 Key Derivation with HD Wallets
          • Using Type 42 Key Derivation for Bitcoin Wallet Management
          • Creating a Custom Transaction Fee Model
          • Building a Pulse Block Headers Client
          • Using ECIES Encryption
      • Go
        • Examples
          • Simple Tx
          • Keys
          • Encryption
          • Broadcasting
          • Inscribing
          • Data Markers
          • Linked Keys
          • ECIES
          • Fees
          • HD Keys
          • Headers
          • Secure Messages
          • Merkle Path Verification
      • Python
        • Examples
          • Simple Tx
          • Verifying BEEF
          • Complex Tx
          • Script Templates
          • Encryption
          • Message Signing
          • Building A Custom Broadcaster
          • HD Wallets
          • Linked Keys
          • Fees
          • Merkle Path Verification
          • ECIES
  • BSV Academy
    • Getting Started
    • BSV Basics: Protocol and Design
      • Introduction
        • Bit-Coin
      • The BSV Ledger
        • The Ledger
        • Triple Entry Accounting
        • Example
      • Coins and Transactions
        • Coins
        • Transactions
        • Transaction Fees
      • Theory
      • Conclusion
    • BSV Enterprise
      • Introduction
      • About BSV Blockchain
        • Introduction
        • Safe, Instant Transactions at a Predictably Low Cost
          • Reliably Low Fees
          • Comparison to Legacy Transaction Systems
          • Payment Channels
        • Scalability to Accommodate Global Demand
          • Big Blocks Show Big Potential
        • A Plan for Regulatory Acceptance
          • Ready-made Compliance
          • The Open BSV License
        • Protocol Stability
          • Building Foundations on a Bedrock of Stone
      • Technical Details
        • The Network
          • The Small World Network
          • Robust In Its Unstructured Simplicity
        • The Bitcoin SV Node Client
          • Teranode - The Future of BSV
        • The Protocol - Simple, Robust and Unbounded
          • What is the BSV Protocol?
        • Proof of Work
          • The Algorithm
          • Efficiency of Proof of Work
        • Privacy and Identity
        • Permissions and Privacy
      • Resources and Tools
        • The Technical Standards Comittee
          • TSC Principles
          • Standard Development Process
          • Status of Current and In-progress Standards
        • The Working Blockchain
          • Pruning to Create a Working Blockchain
          • Building a Working Blockchain from a List of Block Headers
          • A World View Backed by Proof of Work
    • Hash Functions
      • What are Hash Functions?
        • The Differences Between Hashing and Encryption
        • The Three Important Properties of Hash Functions
        • The Hash Functions Found in BSV
      • Base58 and Base58Check
        • What is Base58 and Why Does Bitcoin use it?
        • What is Base58 and How Does BSV use it?
      • SHA256
        • BSV Transactions and SHA-256
        • BSV Blocks and SHA-256
        • Proof-of-Work and HASH-256
      • Walkthrough Implementation of SHA-256 in Golang
        • Overview of SHA-256
        • SHA-256 Input and Processing
        • SHA-256 Compression
        • SHA-256 Final Value Construction and Output
      • RIPEMD-160
        • BSV Addresses & WIFs
      • Walkthrough Implementation of RIPEMD-160 in Golang
        • Overview of RIPEMD-160
        • RIPEMD-160 Input and Processing
        • RIPEMD-160 Compression
        • RIPEMD-160 Final Value Construction and Output
      • Doubla Hashing and BSV's Security
        • Why is Double Hashing Used in BSV
        • Hash Functions and BSV's Security Model
    • Merkle Trees
      • The Merkle Tree
        • What is a Merkle Tree?
        • Why use a Merkle Tree?
        • Merkle Trees in Action
      • Merkles Trees in BSV
        • The Data Elements
        • Transaction Merkle Trees
        • Transaction Merkle Trees in Action
      • Merkle Trees and the Block Header
        • What is the Block Header
        • The Hash Puzzle
        • Proof-of-Work in Action
      • Merkle trees and Verifying Proof of Work
        • Broadcasting the Block
        • The Coinbase Transaction
        • Data Integrity of the Block
        • Saving Disk Space
      • Standarised Merkle Proof
        • What is a Merkle Proof?
        • The BSV Unified Merkle Path (BUMP) Standard
        • Simple and Composite Proofs
      • Merkle Trees and Simplified Payment Verification
        • SPV
        • Offline Payments
    • Digital Signatures
      • What are Digital Signatures
        • Background
        • Introduction
        • Digital Signatures Protocol
        • Properties of Digital Signatures
      • ECDSA Prerequisites
        • Disclaimer
        • Modular Arithmetic
        • Groups, Rings and Finite Fields
        • Discrete Logarithm Problem
        • Elliptic Curve Cryptography (ECC)
        • Discrete Logarithm Problem with Elliptic Curves
      • ECDSA
        • Introduction
        • ECDSA
        • Further Discussion
      • BSV and Digital Signatures
        • Introduction
        • BSV Transaction
        • ECDSA (secp256k1) for BSV Transaction
        • Summary
        • Signed Messages
        • Miner Identification and Digital Signatures
    • BSV Theory
      • Abstract
        • Peer-to-Peer Cash
        • Digital Signatures and Trusted Third Parties
        • Peer-to-Peer Network
        • Timechain and Proof-of-Work
        • CPU Power
        • Cooperation in the Network
        • Network Structure
        • Messaging Between Nodes
      • Introduction
        • Commerce on the Internet
        • Non Reversible Transactions
        • Privacy in Commerce
        • The Paradigm of Fraud Acceptance
        • What is Needed...
        • Protecting Sellers From Fraud
        • Proposed Solution
        • Security and Honesty
      • Transactions
        • Electronic Coins
        • Spending a Coin
        • Payee Verification
        • Existing Solutions
        • First Seen Rule
        • Broadcasting Transactions
        • Achieving Consensus
        • Proof of Acceptance
      • Timestamp Server
        • Timestamped Hashes
        • A Chain of Timestamped Hashes
      • Proof of Work
        • Hashcash
        • Scanning Random Space
        • Nonce
        • Immutable Work
        • Chain Effort
        • One CPU, One Vote
        • The Majority Decision
        • The Honest Chain
        • Attacking the Longest Chain
        • Controlling the Block Discovery Rate
      • Network
        • Running the Network
        • The Longest Chain
        • Simultaneous Blocks
        • Breaking the Tie
        • Missed Messages
      • Incentive
        • The Coinbase Transaction
        • Coin Distribution
        • Mining Analogy
        • Transaction Fees
        • The End of Inflation
        • Encouraging Honesty
        • The Attacker's Dilemma
      • Reclaiming Disk Space
        • Spent Transactions
        • The Merkle Tree
        • Compacting Blocks
        • Block Headers
      • Simplified Payment Verification
        • Full Network Nodes
        • Merkle Branches
        • Transaction Acceptance
        • Verification During Attack Situations
        • Maintaining an Attack
        • Invalid Block Relay System
        • Businesses Running Nodes
      • Combining and Splitting Value
        • Dynamically Sized Coins
        • Inputs and Outputs
        • A Typical Example
        • Fan Out
      • Privacy
        • Traditional Models
        • Privacy in Bitcoin
        • Public Records
        • Stock Exchange Comparison
        • Key Re-Use
        • Privacy - Assessment 2
        • Linking Inputs
        • Linking the Owner
      • Calculations
        • Attacking the Chain
        • Things the Attacker Cannot Achieve
        • The Only Thing an Attacker Can Achieve
        • The Binomial Random Walk
        • The Gambler's Ruin
        • Exponential Odds
        • Waiting For Confirmation
        • Attack Via Proof of Work
        • Vanishing Probabilities
      • Conclusion
        • Conclusion Explained
    • Introduction to Bitcoin Script
      • Chapter 1: About Bitcoin Script
        • 01 - Introduction
        • 02 - FORTH: A Precursor to Bitcoin Script
        • 03 - From FORTH to Bitcoin Script
        • 04 - Bitcoin's Transaction Protocol
        • 05 - Transaction Breakdown
        • 06 - nLockTime
        • 07 - The Script Evaluator
      • Chapter 2: Basic Script Syntax
        • 01 - Introduction
        • 02 - Rules Around Data and Scripting Grammar
        • 03 - The Stacks
      • Chapter 3: The Opcodes
        • 01 - Introduction
        • 02 - Constant Value and PUSHDATA Opcodes
        • 03 - IF Loops
        • 04 - OP_NOP, OP_VERIFY and its Derivatives
        • 05 - OP_RETURN
        • 06 - Stack Operations
        • 07 - Data transformation
        • 08 - Stack Data Queries
        • 09 - Bitwise transformations and Arithmetic
        • 10 - Cryptographic Functions
        • 11 - Disabled and Removed Opcodes
      • Chapter 4: Simple Scripts
        • 01 - Introduction
        • 01 - Pay to Public Key (P2PK)
        • 02 - Pay to Hash Puzzle
        • 03 - Pay to Public Key Hash (P2PKH)
        • 04 - Pay to MultiSig (P2MS)
        • 05 - Pay to MultiSignature Hash (P2MSH)
        • 06 - R-Puzzles
      • Chapter 5: OP_PUSH_TX
        • 01 - Turing Machines
        • 02 - Elliptic Curve Signatures in Bitcoin
        • 03 - OP_PUSH_TX
        • 04 - Signing and Checking the Pre-Image
        • 05 - nVersion
        • 06 - hashPrevouts
        • 07 - hashSequence
        • 08 - Outpoint
        • 09 - scriptLen and scriptPubKey
        • 10 - value
        • 11 - nSequence
        • 12 - hashOutputs
        • 13 - nLocktime
        • 14 - SIGHASH flags
      • Chapter 6: Conclusion
        • Conclusion
    • BSV Infrastructure
      • The Instructions
        • The Whitepaper
        • Steps to Run the Network
        • Step 1
        • Step 2
        • Step 3
        • Step 4
        • Step 5
        • Step 6
      • Rules and their Enforcement
        • Introduction
        • Consensus Rules
        • Block Consensus Rules
        • Transaction Consensus Rules
        • Script Language Rules
        • Standard Local Policies
      • Transactions, Payment Channels and Mempools
      • Block Assembly
      • The Small World Network
        • The Decentralisation of Power
        • Incentive Driven Behaviour
        • Lightspeed Propagation of Transactions
        • Ensuring Rapid Receipt and Propagation of New Blocks
        • Hardware Developments to Meet User Demand
        • Novel Service Delivery Methods
        • MinerID
      • Conclusion
  • Research and Development
    • BRCs
    • Technical Standards
  • Support & Contribution
    • Join Our Discord
    • GitHub
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
Export as PDF
  1. BSV Academy
  2. Introduction to Bitcoin Script
  3. Chapter 5: OP_PUSH_TX

09 - scriptLen and scriptPubKey

Previous08 - OutpointNext10 - value

Last updated 3 months ago

Was this helpful?

Part of the transaction pre-image is the lockScript held in the UTXO being spent in the input. This is broken down as two fields as follows:

  1. lockScriptLength - the locking script length, a (1, 3, 5 or 9 bytes depending on script length)

  2. lockScript - the locking script for the UTXO being spent (Length as defined by previous parameter)

To extract the locking script, we must first extract the length. There are 4 possible sizes for the VarInt, depending on the length of the script. The size of this field can be inferred from the value in its first byte:

  • If the value is equal to or less than 0xFC, the varInt is a 1 byte integer value containing the integer value of lockScriptLength.

  • If the first byte is 0xFD, the varInt is 3 bytes long, with the last 2 bytes containing the integer value of lockScriptLength.

  • If the first byte is 0xFE, the varInt is 5 bytes long, with the last 4 bytes containing the integer value of lockScriptLength.

  • If the first byte is 0xFF, the varInt is 9 bytes long, with the last 8 bytes containing the integer value of lockScriptLength.

Example 1: 2 byte length field

Typically, we can know roughly how big a script might be. A 2 byte length is valid from 253B up to 64kB so we can assume for our purposes this is what we are expecting.

Stack
Script
Description

<r_tx_preimg>

...

Version, hash_prevouts, hash_nSequence and hash_outpoints have been removed

<r_tx_preimg>

0P_3

VarInt is 3 bytes long

<r_tx_preimg> 0x03

OP_SPLIT

Split length

<varint> <rr_tx_preimg>

OP_SWAP

Move to top of stack

<rr_tx_preimg> <varint>

OP_1

First byte is VarInt length field

<rr_tx_preimg> <varint> 0x01

OP_SPLIT

Calculate txid using OP_HASH160

<rr_tx_preimg> <varint_id> <length_be>

OP_NIP

Nip varint ID

<rr_tx_preimg> <length_be>

OP_SPLIT

Split script from pre-image

<rrr_tx_preimg> <lock_script>

...

Rest of script

Now that the script is on the stack, it is possible for it to utilise data stored in itself to enforce the conditions of the next output state. We will get into this shortly.

Example 2: Variable VarInt handling

This example splits a script of unknown length from the stack. It first splits off the 1-byte VarInt type identifier, checks whether the varInt is 1 byte, 3 bytes or 5 bytes long, and then where needed splits the length value from r_tx_preimg before separating the script from the pre-image.

Stack
Script
Description

<r_tx_preimg>

...

Version, hash_prevouts, hash_nSequence and hash_outpoints have been removed

<r_tx_preimg>

0P_1

VarInt type ID is 1 byte

<r_tx_preimg> 0x01

OP_SPLIT

Split type

<type> <rr_tx_preimg>

OP_SWAP

Move to top of stack

<rr_tx_preimg> <type>

OP_2

<rr_tx_preimg> <type> 0x02

OP_NUM2BIN

<rr_tx_preimg> <type>

OP_DUP

Duplicate type

<rr_tx_preimg> <type> <type>

0xFC

0xFC or less is 1 byte varInt

<rr_tx_preimg> <type> <type+00> 0xFC00

OP_GREATERTHANOREQUALTO

Is type >= 0xFE? - Use GREATERTHANOREQUAL because 0xFE is a NEGATIVE integer

<rr_tx_preimg> <type> <result>

OP_NOTIF

If NOT, enter loop. Otherwise <type> is length

<rr_tx_preimg> <type>

OP_DUP

Duplicate type

<rr_tx_preimg> <type> <type>

0xFD

Is length 2 bytes?

<rr_tx_preimg> <type> <type> 0xFD

OP_EQUAL

Test

<rr_tx_preimg> <type> <result>

OP_IF

If 2 bytes then...

<rr_tx_preimg> <type>

OP_DROP

Drop type

<rr_tx_preimg>

OP_2

2 byte length

<rr_tx_preimg> 0x02

OP_SPLIT

Split

<length> <rrr_tx_preimg>

OP_SWAP

Move length_bigendian to top of stack

<rr_tx_preimg> <type>

OP_ELSE

If not 2-byte

<rr_tx_preimg> <type>

0xFE

Is length 4 bytes?

<rr_tx_preimg> <type> 0xFE

OP_EQUAL

Check equality

<rr_tx_preimg> <result>

OP_IF

Enter if statement

<rr_tx_preimg>

OP_4

Length is 4 bytes

<rr_tx_preimg> 0x04

OP_SPLIT

Split length

<length> <rrr_tx_preimg>

OP_SWAP

Swap it to front

<rr_tx_preimg>

OP_ELSE

If not 4, must be 8

<rr_tx_preimg>

OP_8

Length is 8 bytes

<rr_tx_preimg> 0x08

OP_SPLIT

Split length

<length> <rrr_tx_preimg>

OP_SWAP

Swap to front

<rrr_tx_preimg> <length>

OP_ENDIF

Exit IF loop

<rrr_tx_preimg> <length>

OP_ENDIF

Exit IF loop

<rrr_tx_preimg> <length>

0x00

Add 00 to stack (cannot use OP_FALSE)

<rrr_tx_preimg> <length> 0x00

OP_CAT

Add zeroes to the length to ensure it will be interpreted as a positive integer

<rrr_tx_preimg> <length+00>

OP_BIN2NUM

Optimally encode the nubmer

<r_tx_preimg> <length>

OP_SPLIT

split the script from the pre-image remainder

<lock_script> <rrrr_tx_preimg>

OP_SWAP

Swap to the front

<rrrr_tx_preimg> <lock_script>

...

Rest of script

These script elements can easily be customised to your requirements as you define your OP_PUSH_TX script. Simple checks may require scripts smaller than 253 bytes allowing these checks to be optimised as needed. Understanding the processing of the scriptLen value is an important aspect of this process. Much care must be taken to handle integer values so that they are interpreted correctly.

VarInt